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Restful fundamentals
REpresentational State Transfer



What is Rest?
• An architecture
• Centers on the transfer of representations of resources

• A resource is any concept that can be
addressed

• A representation is typically a document that
captures the current or intended state of a
resource

• A client makes requests of a server when it wants to
transition to a new state



Strengths
• Loose coupling
• Less typing (counter-example: SOAP)
• Emphasis on readability; uses nouns and verbs

• HTTP methods as verbs: GET, POST, PUT,
DELETE, etc.

• Resources as nouns, and, further, collections



Constraints
• Client/Server

• Clients are not concerned with storage,
allowing them to be portable.

• Servers are not concerned with UI or user state,
allowing scalability.



Constraints
• Stateless

• No client context stored between requests.
This means no sessions!



Constraints
• Cacheable

• Non-idempotent methods should allow clients to
cache responses.

• Clients should honor HTTP headers with respect
to caching.



Constraints
• Layered system

• Client should not care whether it is connected
directly to the server, or to an intermediary
proxy.



Constraints
• Uniform Interface

• Identification of resources
• Manipulation of resources through

representations
• Self-descriptive messages
• Hypermedia as the engine of application state

(HATEOAS)



Primary aspects of a RESTful
web service

• Base URI for each resource:
http://status.dev:8080/api/status/matthew

• Media type used for representations of the resource
• HTTP methods are the set of operations allowed for

the resource
• The API must be hypertext driven (i.e., provide links

for allowed state transitions)

http://status.dev:8080/api/status/matthew


Content negotiation
• Correctly parse the request

• Read the Content-Type header
• Raise “415 Unsupported media type” status if

unsupported

• Correctly create the reponse

• Read the Accept header
• Set the Content-Type header



Hypermedia
• What is it?
• Why is it important?



What is hypermedia?
• Media type used for a representation
• The link relations between representations and/or

states



Why is hypermedia
important?

• Discoverability



JSON and Hypermedia
JSON does not have a defined way of providing
hypermedia links

Options:

• “Link” header (GitHub approach)
• application/collection+json
• application/hal+json



Link header
Link: <url>; rel="relation"[, ... ]



application/collection+json
See http://amundsen.com/media-types/collection/format/

{

    "collection":

    {

        "links": [

            {"href": "<uri>", "rel": "relation"}

        ]

    }

}

http://amundsen.com/media-types/collection/format/


application/hal+json
See http://tools.ietf.org/html/draft-kelly-json-hal-03

{

    "_links": {

        "relation": {"href": "<uri>"}

    }

}

http://tools.ietf.org/html/draft-kelly-json-hal-03


Error reporting
• HTTP status: 4xx, 5xx
• No further information!
• Solution

• application/api-problem+json



application/api-problem+json
See
http://tools.ietf.org/html/draft-nottingham-http-problem-02

{

    "describedBy": "<url>",

    "title": "generic title of error type",

    "httpStatus": <status code>,

    "detail": "specific message detailing error"

}

http://tools.ietf.org/html/draft-nottingham-http-problem-02


Documenting your API
• What operations are available for a given resource?
• What do representations look like? How do I need to

form my request? What modifiers might be available?



OPTIONS
• Minimally, respond to OPTIONS requests, indicating

HTTP methods allowed via the Allow header.
• Potentially include information in the HTTP body.

• http://zacstewart.com/2012/04/14/http-options-method.html
• http://vimeo.com/49613738 (“Fun with

OPTIONS” by D. Keith Casey at REST Fest
2012)

http://zacstewart.com/2012/04/14/http-options-method.html
http://vimeo.com/49613738


Using a “describedby” Link
relation

• Use a Link header with a “describedby” link relation
pointing to documentation. See
http://www.mnot.net/blog/2012/10/29/NO_OPTIONS

Link: <http://status.dev/api/status/docs.md>; \

 rel="describedby"

http://www.mnot.net/blog/2012/10/29/NO_OPTIONS


ZF2 Fundamentals
The next generation of Zend Framework



Highlights
• PHP 5.3.3+ (and tested on 5.4, as well as upcoming

5.5)
• Modular & flexible (ModuleManager)
• Event-driven (EventManager)
• Leverage Inversion of Control (ServiceManager)
• Re-written MVC, Forms, I18n, Db, and more



MVC key features
• Everything is in a Module
• MVC is event driven and uses ServiceManager
• Controllers contain actions

• which return data for your view scripts, or a
response

• View scripts contain display code (e.g. HTML)



Directory structure



Module directory



Events
Publish and listen to events



Events
• An object triggers an event
• Other objects listen to events



Terminology
• An EventManager is an object that holds a collection

of listeners for one or more named events, and which
triggers events.

• An event is an action.
• A listener is a callback that can react to an event.
• A Target is an object that creates events



Simple example
 use Zend\EventManager\EventManager,

     Zend\EventManager\Event;

 $callback = function($event) {

     echo "An event has happened!\n";

     var_dump($event->getName());

 };

 $events = new EventManager();

 $events->attach('eventName', $callback);

 echo "\nRaise an event\n";

 $events->trigger('eventName');



Listeners
Just a function (Any callback)

 $callback = function($event) {

     echo "An event has happened!\n";

     var_dump($event->getName());

     var_dump($event->getTarget());

     var_dump($event->getParams());

 };

 $events = $someObject->getEventManager();

 $events->attach('eventName', $callback);



The target
Compose an EventManager within a class…

use Zend\EventManager\EventManager,

    Zend\EventManager\Event;

class MyTarget

{

  public $events;

  public function __construct()

  {

    $this->events = new EventManager();

  }

  //...



The target
… and trigger actions within methods.

  public function doIt()

  {

    $event = new Event();

    $event->setTarget($this);

    $event->setParam('one', 1);

    $this->events->trigger('doIt.pre', $event);

    // do something here

    $this->events->trigger('doIt.post', $event);

  }



Typical usage
$callback = function ($event) {

    echo "Responding to doIt.pre!\n";

    var_dump(get_class($event->getTarget()));

    var_dump($event->getName());

    var_dump($event->getParams());

};

$target = new MyTarget();

$target->events->attach('doIt.pre', $callback);

$target->doIt();



Attaching listeners globally
• Listeners are used for cross-cutting concerns
• You want to set up listeners before you instantiation

of object with event manager
• For example: logging, caching



SharedEventManager
Attach a listener to another class’ event manager

$shared = $events->getSharedManager();

// or

$shared = StaticEventManager::getInstance();

$shared->attach('Gallery\\Mapper\\Photo',

    'findById.pre', function(Event $e) {

        $id = $e->getParam('id');

        $message = "Retrieving photo: $id";

        MyLogger::log($message);

});



Returned values from
listeners
public function doIt()

{

  $events = $this->events;

  $results = $events->trigger('doIt', $this);

  foreach ($results as $result) {

    var_dump($result);

  }

}

$results are in reverse order
(most recently triggered event first)



Short-circuiting
$params = array('id' => 1);

$results = $this->events->trigger('doIt.pre',

    $this, $params, function ($result) {

      if ($result instanceof ResultSet) {

        return true;

      }

      return false;

    }

  );

if ($results->stopped()) { // We ended early }



Priority
• Control the order of execution of listeners
• $priority is last parameter to attach()

    $events->attach('doIt.pre', $cb, $priority);

• Default is 1

• Larger number increases priority (e.g. 1000)
• Smaller number decreases priority (e.g. -500)



Services
It (lazily) instantiates and holds objects.



Services
• Objects you work with (including Controllers).
• Easy to replace alternative implementations.
• Clean and simple way to configure dependencies.
• Explicit and easy to understand - no magic!
• Inversion of Control.



Usage
$controller = $sm->get('Gallery\Mapper\Photo');



Types of services
• Instances (services)
• Constructor-less classes (invokables)
• Factories for objects with dependencies (factories)
• Aliased services (aliases)
• Automated initialization (initializers)
• Factories for multiple related objects

(abstract_factories)



Instances
// programatically

$sm->setService('foo', $fooInstance);

// configuration

array('services' => array(

    'foo' => new Foo(),

));



Invokables
// programatically

$sm->setInvokableClass('foo', 'Bar\Foo');

// configuration

array('invokables' => array(

    'foo' => 'Bar\Foo',

));



Factories
// programatically

$sm->setFactory('foo', function($sm) {

        $dependency = $sm->get('Dependency')

        return new Foo($dependency);

    });

// configuration

array('factories' => array(

  'foo' => function($sm) { //.. },

  'bar' => 'Some\Static::method',

  'baz' => 'Class\Implementing\FactoryInterface',

  'bat' => 'Class\Implementing\Invoke',

));



Aliases
// programatically

$sm->setAlias('foo_db', 'db_adapter');

// configuration

array('factories' => array(

    'foo_db', 'db_adapter', // alias of a service

    'bar_db', 'foo_db',     // alias of an alias

));

// All the same instance

$db = $sm->get('db_adapter');

$db = $sm->get('foo_db');

$db = $sm->get('bar_db');



Initializers
// programatically

$sm->addInitializer($callback);

// configuration

array('initializers' => array(

  $instance,

  $callback,

  'Class\Implementing\InitializerInterface',

  'Class\Implementing\Invoke',

));



An initializer
function($instance, $sm) {

    if ($instance instanceof FooAwareInterface) {

        return;

    }

    $instance->setFoo($sm->get('foo'));

},



Abstract factories
Factory capable of handling multiple services

// programatically

$sm->addAbstractFactory($abstractFactoryInstance);

$sm->addAbstractFactory('FooFactory');

// configuration

array('abstract_factories' => array(

  'Class\Implementing\AbstractFactoryInterface',

    $someAbstractFactoryInstance,

);



An abstract factory
class AFactory implements AbstractFactoryInterface

{

    public function canCreateServiceWithName(

        ServiceLocatorInterface $services,

        $name, $requestedName

    ) {

        return in_array($name, array('foo','bar');

    }

    public function createServiceWithName(/*sig*/)

    {

        return $name == 'foo' ? new Foo : new Bar;

    }

}



Other features
• All plugin managers are services managers.
• Services are shared - can disable per service.
• Manager “peering” is available.



Configuration in practice
• A nested array in:

• MyModuleModule::getServiceConfig()
• ‘service_manager’ array key in config

• sub-array keys : services, invokables, factories,
aliases, initializers, abstract_factories



Modules
Re-usable pieces of functionality for constructing a

more complex application.



Modules
Provide your application with:

• autoloading
• configuration
• services (inc controllers, plugins, etc.)
• event listeners

Reusable between applications - “plug & play”!



What can modules be?
Anything!

• Plugins: payment module for e-commerce
• View helpers: Markdown support
• Themes: CSS files, images, view scripts
• Libraries: Doctrine2 integration, RESTful support
• Applications: blog, e-commerce platform, CMS



A module is…
• A PHP namespace
• A class called Module within that namespace

• which provides features to the application



A ZF2 Module
    <?php

    namespace MyModule;

    class Module {}

That’s it.



A complete ZF2 module
namespace EdpMarkdown;

class Module extends

    \Zend\View\Helper\AbstractHelper

{

    public function getViewHelperConfig() {

        return array('services' => array(

            'markdown' => $this));

    }

    public function __invoke($string = null) {

        require_once __DIR__ . 'markdown.php';

        return Markdown($string);

    }

}



ModuleManager
• Loads all modules
• Triggers an event for each module

• allowing listeners to act on Module classes
• Results in calls specific methods within your
Module class



Module methods called
• getAutoloaderConfig()

• init()

• onBootstrap()

• Service Manager methods:

• getServiceConfig()

• getControllerConfig()

• getControllerPluginConfig()

• getViewHelperConfig()



Other actions
• If LocatorRegisteredInterface is implemented,

then register with the service manager.
• All configs are merged together:

1. getConfig() results merged in the order
modules are loaded.

2. Config glob/static paths are merged.
3. The getServiceConfig() (and friends) results

are merged together then merged with the
result of steps 1 and 2.



A typical Module class
namespace My;

class Module {

    public function getAutoloaderConfig() {

        // return config for autoloader factory

    }

    public function getConfig() {

        return include

            __DIR__ . '/config/module.config.php';

    }

    public function onBootstrap($e) {

        // do initialization

    }

}



Module best practices
• Keep init() and onBootstrap() very lightweight.
• Read-only (do not perform writes within modules).
• Utilize a vendor prefix (e.g., EdpMarkdown, not
Markdown).

• Do one thing, and do it well.



RESTful ZF2
Putting REST & ZF2 together



Foundations
• Routing
• AbstractRestfulController

• Reacting to request headers
• Creating hypermedia payloads
• Creating error payloads



Routing
• Route to an AbstractRestfulController

implementation

• Allows a single route to manage all HTTP
methods for a given resource

• Use a combination of Literal and/or Segment routes



Sample Route
 'status' => array(

     'type' => 'Segment',

     'options' => array(

         'route' => '/api/status[/:id]',

         'defaults' => array(

             'controller' => 'StatusController',

         ),

         'constraints' => array(

             'id' => '[a-f0-9]{40}',

         ),

     ),

 ),



AbstractRestfulController
• Maps HTTP methods to individual class methods
• Performs basic content-negotiation

(application/www-form-urlencoded and JSON
bodies will be parsed and provided as $data)



Mapping methods
• GET :: getList() or get($id)
• POST :: create($data)
• PUT :: replaceList(), update($id, $data)
• PATCH :: patch($id, $data)
• DELETE :: deleteList(), delete($id)
• HEAD :: head($id = null)
• OPTIONS :: options()



Selecting an acceptable view
model

• Select a view model based on Accept
• Attach a view strategy based on view model



AcceptableViewModelSelector
• Controller plugin

 $criteria = array(

     'Zend\View\Model\JsonModel' => array(

         '\*/json',

     ),

 );

 $model = $this->acceptableViewModel($criteria);



Changing view strategy
based on model

• Listen on the controller’s dispatch event

 $sharedEvents->attach(

 'Zend\Mvc\Controller\AbstractRestfulController',

 'dispatch',

 $listener

 -10

 );



Sample listener
 function (MvcEvent $e) {

   $result = $e->getResult();

   if (!$result instanceof JsonModel) {

       return;

   }

   $app      = $e->getApplication();

   $services = $app->getServiceManager();

   $strategy = $services->get('ViewJsonStrategy');

   $view     = $services->get('View');

   $view->attach($strategy, 100);

 },



Directly examining the
Accept header
 $headers = $request->getHeaders();

 if (!$headers->has('Accept')) {

     // no Accept header; do default

     return;

 }

 $accept = $headers->get('Accept');

 if ($accept->match($mediaType)) {

     // we have a match!

     return;

 }



Hypermedia payloads
• Links should be fully qualified: include, scheme,

server, and port if necessary
• A self relation is recommended
• With paginated sets, include first, last, next, and
prev relations



Tools for creating links
• The url controller plugin and/or view helper can

generate the path if a route is known.
• The serverUrl view helper can generate the

scheme/server/port combination
• Paginators can be inspected and used to generate

pagination relations



Generating individual links
 $path = $urlHelper->fromRoute($route, array(

     'id' => $id,

 ));

 $url  = $serverUrlHelper->__invoke($path);



Generating paginated links
 // $page is the current page

 // $count is the total number of pages

 // $base is the base URL to the resource

 $next  = ($page == $count) ? false : $page + 1;

 $prev  = ($page == 1)      ? false : $page - 1;

 $links = array(

     'self' => $base

         . (1 == $page ? '' : '?p=' . $page),

 );

 if ($page != 1) {

     $links['first'] = $base;

 }



cont…
if ($count != 1) {

    $links['last'] = $base . '?p=' . $count;

}

if ($prev) {

    $links['prev'] = $base

        . ((1 == $prev) ? '' : '?p=' . $prev;

}

if ($next) {

    $links['next'] = $base . '?p=' . $next;

}



Where to generate links
• Controller is easiest, but may not be semantically

correct
• View model makes sense, but is hard to inject with

helpers
• Renderer makes sense, but likely requires specialized

payloads in the view model
• A event listener could process the view model and

inject them; similar issues to the renderer, though.
• Choose your poison.



Error payloads
• Be consistent
• Provide detail
• application/api-problem+json is a nice standard



API-Problem payloads
• describedby is required. If corresponding to HTTP

status,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
describing HTTP status codes is a nice default.
• title is also required; again, if corresponding to

HTTP status, use established status descriptions.
• httpStatus is not required, but recommended.
• detail is your place to provide any additional

information.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Where to generate
API-Problem payloads

• Typically, within the controller; this is where the
errors happen.

• You may also want listeners on dispatch.error so
you can generate 404 responses in this format.



Practical application
• YOU will build a simple “status” API for posting

social status

• “text” representing the status
• “user” representing the user posting the status
• “timestamp” when the status was created
• Collection of statuses by user, in reverse

chronological order

• User is present in the URI



Steps
• Create the domain logic (this is the hard part)
• Create a route
• Create a controller that:

• calls on the domain logic
• varies the view model based on the Accept

header
• creates API-Problem payloads for errors

• Create a listener for injecting hypermedia links in the
view model



Route
• /status/:user[/:id]



Controller
• Extend AbstractRestfulController

• use AcceptableViewModelSelector to pull a
relevant view model based on Accept header;
create a special view model type that we can
listen for later.

• set specific variables in the view that we can
query later

• use a special object for indicating errors
• set appropriate HTTP status codes



Listener
• Listen for our special view model type
• If an error is detected:

• Create an API-Problem payload
• Set the response status code

• Generate hyperlinks based on whether we have a
collection or an individual item.



Demonstration
This is meant to be alive demo of the finished API, and
maybe some code samples.



PhlyRestfully
• Module that does these bits for you
• Add it to composer

• “phly/phly-restfully”: “dev-master@dev”

• Provide a resource listener that does the various
persistence related operations and a route, and go.

test

mailto:dev-master@dev


Review
What have we learnt today?



Review
• REST is an architecture, with lots of recommendations

but no single, canonical methodology
• Don’t skimp or skip the documentation!



Review
• REST has lots of little details to pay attention to:

• URIs per resource
• HTTP methods indicating the operations

available for a resource
• Media types indicating resource

representations govern how to parse a request
as well as how to format a response

• Hypermedia links to promote discoverability
and available state changes



Review
• Several emerging standards surrounding specifically

RESTful JSON APIs

• Collection+JSON
• Hypertext Application Language (HAL)
• API-Problem



Review
• ZF2 has a lot of built-in features to help build RESTful

applications

• AbstractRestfulController

• Accept header implementation
• Rich HTTP tooling in general
• Flexible view layer



Thank you!
https://joind.in/7781

Rob Allen : http://akrabat.com : @akrabat
Matthew Weier O’Phinney : http://mwop.net : @mwop

https://joind.in/7781
http://akrabat.com
http://mwop.net
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