
RESTful Services made
easy with ZF2

by Rob Allen and Matthew Weier O’Phinney
January 2013

About us
Rob Allen

• ZF community team
• @akrabat

.
Matthew Weier O'Phinney

• ZF project lead
• @mwop

Agenda
• RESTful fundamentals
• Zend Framework 2 fundamentals
• RESTful ZF2

Restful fundamentals
REpresentational State Transfer

What is Rest?
• An architecture
• Centers on the transfer of representations of resources

• A resource is any concept that can be
addressed

• A representation is typically a document that
captures the current or intended state of a
resource

• A client makes requests of a server when it wants to
transition to a new state

Strengths
• Loose coupling
• Less typing (counter-example: SOAP)
• Emphasis on readability; uses nouns and verbs

• HTTP methods as verbs: GET, POST, PUT,
DELETE, etc.

• Resources as nouns, and, further, collections

Constraints
• Client/Server

• Clients are not concerned with storage,
allowing them to be portable.

• Servers are not concerned with UI or user state,
allowing scalability.

Constraints
• Stateless

• No client context stored between requests.
This means no sessions!

Constraints
• Cacheable

• Non-idempotent methods should allow clients to
cache responses.

• Clients should honor HTTP headers with respect
to caching.

Constraints
• Layered system

• Client should not care whether it is connected
directly to the server, or to an intermediary
proxy.

Constraints
• Uniform Interface

• Identification of resources
• Manipulation of resources through

representations
• Self-descriptive messages
• Hypermedia as the engine of application state

(HATEOAS)

Primary aspects of a RESTful
web service

• Base URI for each resource:
http://status.dev:8080/api/status/matthew

• Media type used for representations of the resource
• HTTP methods are the set of operations allowed for

the resource
• The API must be hypertext driven (i.e., provide links

for allowed state transitions)

http://status.dev:8080/api/status/matthew

Content negotiation
• Correctly parse the request

• Read the Content-Type header
• Raise “415 Unsupported media type” status if

unsupported

• Correctly create the reponse

• Read the Accept header
• Set the Content-Type header

Hypermedia
• What is it?
• Why is it important?

What is hypermedia?
• Media type used for a representation
• The link relations between representations and/or

states

Why is hypermedia
important?

• Discoverability

JSON and Hypermedia
JSON does not have a defined way of providing
hypermedia links

Options:

• “Link” header (GitHub approach)
• application/collection+json
• application/hal+json

Link header
Link: <url>; rel="relation"[, ...]

application/collection+json
See http://amundsen.com/media-types/collection/format/

{

 "collection":

 {

 "links": [

 {"href": "<uri>", "rel": "relation"}

]

 }

}

http://amundsen.com/media-types/collection/format/

application/hal+json
See http://tools.ietf.org/html/draft-kelly-json-hal-03

{

 "_links": {

 "relation": {"href": "<uri>"}

 }

}

http://tools.ietf.org/html/draft-kelly-json-hal-03

Error reporting
• HTTP status: 4xx, 5xx
• No further information!
• Solution

• application/api-problem+json

application/api-problem+json
See
http://tools.ietf.org/html/draft-nottingham-http-problem-02

{

 "describedBy": "<url>",

 "title": "generic title of error type",

 "httpStatus": <status code>,

 "detail": "specific message detailing error"

}

http://tools.ietf.org/html/draft-nottingham-http-problem-02

Documenting your API
• What operations are available for a given resource?
• What do representations look like? How do I need to

form my request? What modifiers might be available?

OPTIONS
• Minimally, respond to OPTIONS requests, indicating

HTTP methods allowed via the Allow header.
• Potentially include information in the HTTP body.

• http://zacstewart.com/2012/04/14/http-options-method.html
• http://vimeo.com/49613738 (“Fun with

OPTIONS” by D. Keith Casey at REST Fest
2012)

http://zacstewart.com/2012/04/14/http-options-method.html
http://vimeo.com/49613738

Using a “describedby” Link
relation

• Use a Link header with a “describedby” link relation
pointing to documentation. See
http://www.mnot.net/blog/2012/10/29/NO_OPTIONS

Link: <http://status.dev/api/status/docs.md>; \

 rel="describedby"

http://www.mnot.net/blog/2012/10/29/NO_OPTIONS

ZF2 Fundamentals
The next generation of Zend Framework

Highlights
• PHP 5.3.3+ (and tested on 5.4, as well as upcoming

5.5)
• Modular & flexible (ModuleManager)
• Event-driven (EventManager)
• Leverage Inversion of Control (ServiceManager)
• Re-written MVC, Forms, I18n, Db, and more

MVC key features
• Everything is in a Module
• MVC is event driven and uses ServiceManager
• Controllers contain actions

• which return data for your view scripts, or a
response

• View scripts contain display code (e.g. HTML)

Directory structure

Module directory

Events
Publish and listen to events

Events
• An object triggers an event
• Other objects listen to events

Terminology
• An EventManager is an object that holds a collection

of listeners for one or more named events, and which
triggers events.

• An event is an action.
• A listener is a callback that can react to an event.
• A Target is an object that creates events

Simple example
 use Zend\EventManager\EventManager,

 Zend\EventManager\Event;

 $callback = function($event) {

 echo "An event has happened!\n";

 var_dump($event->getName());

 };

 $events = new EventManager();

 $events->attach('eventName', $callback);

 echo "\nRaise an event\n";

 $events->trigger('eventName');

Listeners
Just a function (Any callback)

 $callback = function($event) {

 echo "An event has happened!\n";

 var_dump($event->getName());

 var_dump($event->getTarget());

 var_dump($event->getParams());

 };

 $events = $someObject->getEventManager();

 $events->attach('eventName', $callback);

The target
Compose an EventManager within a class…

use Zend\EventManager\EventManager,

 Zend\EventManager\Event;

class MyTarget

{

 public $events;

 public function __construct()

 {

 $this->events = new EventManager();

 }

 //...

The target
… and trigger actions within methods.

 public function doIt()

 {

 $event = new Event();

 $event->setTarget($this);

 $event->setParam('one', 1);

 $this->events->trigger('doIt.pre', $event);

 // do something here

 $this->events->trigger('doIt.post', $event);

 }

Typical usage
$callback = function ($event) {

 echo "Responding to doIt.pre!\n";

 var_dump(get_class($event->getTarget()));

 var_dump($event->getName());

 var_dump($event->getParams());

};

$target = new MyTarget();

$target->events->attach('doIt.pre', $callback);

$target->doIt();

Attaching listeners globally
• Listeners are used for cross-cutting concerns
• You want to set up listeners before you instantiation

of object with event manager
• For example: logging, caching

SharedEventManager
Attach a listener to another class’ event manager

$shared = $events->getSharedManager();

// or

$shared = StaticEventManager::getInstance();

$shared->attach('Gallery\\Mapper\\Photo',

 'findById.pre', function(Event $e) {

 $id = $e->getParam('id');

 $message = "Retrieving photo: $id";

 MyLogger::log($message);

});

Returned values from
listeners
public function doIt()

{

 $events = $this->events;

 $results = $events->trigger('doIt', $this);

 foreach ($results as $result) {

 var_dump($result);

 }

}

$results are in reverse order
(most recently triggered event first)

Short-circuiting
$params = array('id' => 1);

$results = $this->events->trigger('doIt.pre',

 $this, $params, function ($result) {

 if ($result instanceof ResultSet) {

 return true;

 }

 return false;

 }

);

if ($results->stopped()) { // We ended early }

Priority
• Control the order of execution of listeners
• $priority is last parameter to attach()

 $events->attach('doIt.pre', $cb, $priority);

• Default is 1

• Larger number increases priority (e.g. 1000)
• Smaller number decreases priority (e.g. -500)

Services
It (lazily) instantiates and holds objects.

Services
• Objects you work with (including Controllers).
• Easy to replace alternative implementations.
• Clean and simple way to configure dependencies.
• Explicit and easy to understand - no magic!
• Inversion of Control.

Usage
$controller = $sm->get('Gallery\Mapper\Photo');

Types of services
• Instances (services)
• Constructor-less classes (invokables)
• Factories for objects with dependencies (factories)
• Aliased services (aliases)
• Automated initialization (initializers)
• Factories for multiple related objects

(abstract_factories)

Instances
// programatically

$sm->setService('foo', $fooInstance);

// configuration

array('services' => array(

 'foo' => new Foo(),

));

Invokables
// programatically

$sm->setInvokableClass('foo', 'Bar\Foo');

// configuration

array('invokables' => array(

 'foo' => 'Bar\Foo',

));

Factories
// programatically

$sm->setFactory('foo', function($sm) {

 $dependency = $sm->get('Dependency')

 return new Foo($dependency);

 });

// configuration

array('factories' => array(

 'foo' => function($sm) { //.. },

 'bar' => 'Some\Static::method',

 'baz' => 'Class\Implementing\FactoryInterface',

 'bat' => 'Class\Implementing\Invoke',

));

Aliases
// programatically

$sm->setAlias('foo_db', 'db_adapter');

// configuration

array('factories' => array(

 'foo_db', 'db_adapter', // alias of a service

 'bar_db', 'foo_db', // alias of an alias

));

// All the same instance

$db = $sm->get('db_adapter');

$db = $sm->get('foo_db');

$db = $sm->get('bar_db');

Initializers
// programatically

$sm->addInitializer($callback);

// configuration

array('initializers' => array(

 $instance,

 $callback,

 'Class\Implementing\InitializerInterface',

 'Class\Implementing\Invoke',

));

An initializer
function($instance, $sm) {

 if ($instance instanceof FooAwareInterface) {

 return;

 }

 $instance->setFoo($sm->get('foo'));

},

Abstract factories
Factory capable of handling multiple services

// programatically

$sm->addAbstractFactory($abstractFactoryInstance);

$sm->addAbstractFactory('FooFactory');

// configuration

array('abstract_factories' => array(

 'Class\Implementing\AbstractFactoryInterface',

 $someAbstractFactoryInstance,

);

An abstract factory
class AFactory implements AbstractFactoryInterface

{

 public function canCreateServiceWithName(

 ServiceLocatorInterface $services,

 $name, $requestedName

) {

 return in_array($name, array('foo','bar');

 }

 public function createServiceWithName(/*sig*/)

 {

 return $name == 'foo' ? new Foo : new Bar;

 }

}

Other features
• All plugin managers are services managers.
• Services are shared - can disable per service.
• Manager “peering” is available.

Configuration in practice
• A nested array in:

• MyModuleModule::getServiceConfig()
• ‘service_manager’ array key in config

• sub-array keys : services, invokables, factories,
aliases, initializers, abstract_factories

Modules
Re-usable pieces of functionality for constructing a

more complex application.

Modules
Provide your application with:

• autoloading
• configuration
• services (inc controllers, plugins, etc.)
• event listeners

Reusable between applications - “plug & play”!

What can modules be?
Anything!

• Plugins: payment module for e-commerce
• View helpers: Markdown support
• Themes: CSS files, images, view scripts
• Libraries: Doctrine2 integration, RESTful support
• Applications: blog, e-commerce platform, CMS

A module is…
• A PHP namespace
• A class called Module within that namespace

• which provides features to the application

A ZF2 Module
 <?php

 namespace MyModule;

 class Module {}

That’s it.

A complete ZF2 module
namespace EdpMarkdown;

class Module extends

 \Zend\View\Helper\AbstractHelper

{

 public function getViewHelperConfig() {

 return array('services' => array(

 'markdown' => $this));

 }

 public function __invoke($string = null) {

 require_once __DIR__ . 'markdown.php';

 return Markdown($string);

 }

}

ModuleManager
• Loads all modules
• Triggers an event for each module

• allowing listeners to act on Module classes
• Results in calls specific methods within your
Module class

Module methods called
• getAutoloaderConfig()

• init()

• onBootstrap()

• Service Manager methods:

• getServiceConfig()

• getControllerConfig()

• getControllerPluginConfig()

• getViewHelperConfig()

Other actions
• If LocatorRegisteredInterface is implemented,

then register with the service manager.
• All configs are merged together:

1. getConfig() results merged in the order
modules are loaded.

2. Config glob/static paths are merged.
3. The getServiceConfig() (and friends) results

are merged together then merged with the
result of steps 1 and 2.

A typical Module class
namespace My;

class Module {

 public function getAutoloaderConfig() {

 // return config for autoloader factory

 }

 public function getConfig() {

 return include

 __DIR__ . '/config/module.config.php';

 }

 public function onBootstrap($e) {

 // do initialization

 }

}

Module best practices
• Keep init() and onBootstrap() very lightweight.
• Read-only (do not perform writes within modules).
• Utilize a vendor prefix (e.g., EdpMarkdown, not
Markdown).

• Do one thing, and do it well.

RESTful ZF2
Putting REST & ZF2 together

Foundations
• Routing
• AbstractRestfulController

• Reacting to request headers
• Creating hypermedia payloads
• Creating error payloads

Routing
• Route to an AbstractRestfulController

implementation

• Allows a single route to manage all HTTP
methods for a given resource

• Use a combination of Literal and/or Segment routes

Sample Route
 'status' => array(

 'type' => 'Segment',

 'options' => array(

 'route' => '/api/status[/:id]',

 'defaults' => array(

 'controller' => 'StatusController',

),

 'constraints' => array(

 'id' => '[a-f0-9]{40}',

),

),

),

AbstractRestfulController
• Maps HTTP methods to individual class methods
• Performs basic content-negotiation

(application/www-form-urlencoded and JSON
bodies will be parsed and provided as $data)

Mapping methods
• GET :: getList() or get($id)
• POST :: create($data)
• PUT :: replaceList(), update($id, $data)
• PATCH :: patch($id, $data)
• DELETE :: deleteList(), delete($id)
• HEAD :: head($id = null)
• OPTIONS :: options()

Selecting an acceptable view
model

• Select a view model based on Accept
• Attach a view strategy based on view model

AcceptableViewModelSelector
• Controller plugin

 $criteria = array(

 'Zend\View\Model\JsonModel' => array(

 '*/json',

),

);

 $model = $this->acceptableViewModel($criteria);

Changing view strategy
based on model

• Listen on the controller’s dispatch event

 $sharedEvents->attach(

 'Zend\Mvc\Controller\AbstractRestfulController',

 'dispatch',

 $listener

 -10

);

Sample listener
 function (MvcEvent $e) {

 $result = $e->getResult();

 if (!$result instanceof JsonModel) {

 return;

 }

 $app = $e->getApplication();

 $services = $app->getServiceManager();

 $strategy = $services->get('ViewJsonStrategy');

 $view = $services->get('View');

 $view->attach($strategy, 100);

 },

Directly examining the
Accept header
 $headers = $request->getHeaders();

 if (!$headers->has('Accept')) {

 // no Accept header; do default

 return;

 }

 $accept = $headers->get('Accept');

 if ($accept->match($mediaType)) {

 // we have a match!

 return;

 }

Hypermedia payloads
• Links should be fully qualified: include, scheme,

server, and port if necessary
• A self relation is recommended
• With paginated sets, include first, last, next, and
prev relations

Tools for creating links
• The url controller plugin and/or view helper can

generate the path if a route is known.
• The serverUrl view helper can generate the

scheme/server/port combination
• Paginators can be inspected and used to generate

pagination relations

Generating individual links
 $path = $urlHelper->fromRoute($route, array(

 'id' => $id,

));

 $url = $serverUrlHelper->__invoke($path);

Generating paginated links
 // $page is the current page

 // $count is the total number of pages

 // $base is the base URL to the resource

 $next = ($page == $count) ? false : $page + 1;

 $prev = ($page == 1) ? false : $page - 1;

 $links = array(

 'self' => $base

 . (1 == $page ? '' : '?p=' . $page),

);

 if ($page != 1) {

 $links['first'] = $base;

 }

cont…
if ($count != 1) {

 $links['last'] = $base . '?p=' . $count;

}

if ($prev) {

 $links['prev'] = $base

 . ((1 == $prev) ? '' : '?p=' . $prev;

}

if ($next) {

 $links['next'] = $base . '?p=' . $next;

}

Where to generate links
• Controller is easiest, but may not be semantically

correct
• View model makes sense, but is hard to inject with

helpers
• Renderer makes sense, but likely requires specialized

payloads in the view model
• A event listener could process the view model and

inject them; similar issues to the renderer, though.
• Choose your poison.

Error payloads
• Be consistent
• Provide detail
• application/api-problem+json is a nice standard

API-Problem payloads
• describedby is required. If corresponding to HTTP

status,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
describing HTTP status codes is a nice default.
• title is also required; again, if corresponding to

HTTP status, use established status descriptions.
• httpStatus is not required, but recommended.
• detail is your place to provide any additional

information.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Where to generate
API-Problem payloads

• Typically, within the controller; this is where the
errors happen.

• You may also want listeners on dispatch.error so
you can generate 404 responses in this format.

Practical application
• YOU will build a simple “status” API for posting

social status

• “text” representing the status
• “user” representing the user posting the status
• “timestamp” when the status was created
• Collection of statuses by user, in reverse

chronological order

• User is present in the URI

Steps
• Create the domain logic (this is the hard part)
• Create a route
• Create a controller that:

• calls on the domain logic
• varies the view model based on the Accept

header
• creates API-Problem payloads for errors

• Create a listener for injecting hypermedia links in the
view model

Route
• /status/:user[/:id]

Controller
• Extend AbstractRestfulController

• use AcceptableViewModelSelector to pull a
relevant view model based on Accept header;
create a special view model type that we can
listen for later.

• set specific variables in the view that we can
query later

• use a special object for indicating errors
• set appropriate HTTP status codes

Listener
• Listen for our special view model type
• If an error is detected:

• Create an API-Problem payload
• Set the response status code

• Generate hyperlinks based on whether we have a
collection or an individual item.

Demonstration
This is meant to be alive demo of the finished API, and
maybe some code samples.

PhlyRestfully
• Module that does these bits for you
• Add it to composer

• “phly/phly-restfully”: “dev-master@dev”

• Provide a resource listener that does the various
persistence related operations and a route, and go.

test

mailto:dev-master@dev

Review
What have we learnt today?

Review
• REST is an architecture, with lots of recommendations

but no single, canonical methodology
• Don’t skimp or skip the documentation!

Review
• REST has lots of little details to pay attention to:

• URIs per resource
• HTTP methods indicating the operations

available for a resource
• Media types indicating resource

representations govern how to parse a request
as well as how to format a response

• Hypermedia links to promote discoverability
and available state changes

Review
• Several emerging standards surrounding specifically

RESTful JSON APIs

• Collection+JSON
• Hypertext Application Language (HAL)
• API-Problem

Review
• ZF2 has a lot of built-in features to help build RESTful

applications

• AbstractRestfulController

• Accept header implementation
• Rich HTTP tooling in general
• Flexible view layer

Thank you!
https://joind.in/7781

Rob Allen : http://akrabat.com : @akrabat
Matthew Weier O’Phinney : http://mwop.net : @mwop

https://joind.in/7781
http://akrabat.com
http://mwop.net

	About us
	Agenda
	What is Rest?
	Strengths
	Constraints
	Constraints
	Constraints
	Constraints
	Constraints
	Primary aspects of a RESTful web service
	Content negotiation
	Hypermedia
	What is hypermedia?
	Why is hypermedia important?
	JSON and Hypermedia
	Link header
	application/collection+json
	application/hal+json
	Error reporting
	application/api-problem+json
	Documenting your API
	OPTIONS
	Using a “describedby” Link relation
	Highlights
	MVC key features
	Directory structure
	Module directory
	Events
	Terminology
	Simple example
	Listeners
	The target
	The target
	Typical usage
	Attaching listeners globally
	SharedEventManager
	Returned values from listeners
	Short-circuiting
	Priority
	Services
	Usage
	Types of services
	Instances
	Invokables
	Factories
	Aliases
	Initializers
	An initializer
	Abstract factories
	An abstract factory
	Other features
	Configuration in practice
	Modules
	What can modules be?
	A module is…
	A ZF2 Module
	A complete ZF2 module
	ModuleManager
	Module methods called
	Other actions
	A typical Module class
	Module best practices
	Foundations
	Routing
	Sample Route
	AbstractRestfulController
	Mapping methods
	Selecting an acceptable view model
	AcceptableViewModelSelector
	Changing view strategy based on model
	Sample listener
	Directly examining the Accept header
	Hypermedia payloads
	Tools for creating links
	Generating individual links
	Generating paginated links
	cont…
	Where to generate links
	Error payloads
	API-Problem payloads
	Where to generate API-Problem payloads
	Practical application
	Steps
	Route
	Controller
	Listener
	Demonstration
	PhlyRestfully
	Review
	Review
	Review
	Review

